Simple Structure in Complex Nuclei

نویسنده

  • John Wood
چکیده

Atomic nuclei are finite many-body systems governed by the laws of quantum mechanics. The quest for a thorough understanding of the quantum structure of nuclei is far from finished, even after some seventy years of investigation, because such many-body quantum systems are so complex. In Physical Review Letters, Deyan Yordanov at the Max Planck Institute for Nuclear Physics, Germany, and co-workers report a clever laser spectroscopic study of cadmium isotopes that extends our confidence in one of the fundamental models of nuclear structure while emphasizing some of its surprisingly simple foundations [1]. In contrast to many experiments, their approach yields data in just the form you’d want for testing a model: they measure how a few properties change with a single parameter. This systematic investigation of long sequences of isotopes (constant proton number Z) or isotones (constant neutron number N) is a powerful line of enquiry. Such an approach reveals progressive changes in structure with changes of particle number. Moments, such as magnetic dipole and electric quadrupole, are fundamental properties of finite manyparticle quantum systems and they provide very exacting tests of models. Indeed, it was nuclear magnetic moment data available in the 1940s that contributed significantly to the inception of the nuclear shell model [2], and almost contemporaneously, nuclear quadrupole moment data led to the concept of a deformed nucleus [3–6]. Yet nature only furnishes a few hundred (stable) nuclei for experimental study. These are spread over all of the chemical elements, in small groups. But facilities for producing rare isotopes, which are now becoming a major focal point for nuclear physics research, can provide access to long chains (30 or more) of isotopes. These facilities use high-energy protons to spallate (from “to spall” meaning to flake off) nuclei from a heavy element. If the target is heavy, like uranium-238, the process can result in around 1000 different nuclei. The challenge is then to isolate the nuclear species of interest and deliver them to the experiment. In the study of Yordanov et al., isotopes of cadmium (atomic number Z = 48) spanning over twenty mass numbers (A = Z + N = 107 to 129) are isolated, one mass at a time, using a mass separator, and subjected to high-precision optical hyperfine spectroscopy. The production of the cadmium isotopes is by fission of 238U using high-energy protons at ISOLDE-CERN. The authors followed a sequence of ingenious steps to obtain their results. They first directed the highenergy protons onto a tungsten converter to produce large quantities of low-to-medium-energy neutrons that induce fission in the uranium target. While fission still leads to hundreds of different nuclei, they are predominantly neutron-rich, unlike spallation, which yields “everything.” The reaction products were separated by mass number and all combinations of Z + N with a fixed A are delivered to the experimental measurement device. A temperature-controlled quartz transfer line to the ion source selectively transported the cadmium isotopes, retaining isotopes of other chemical, i.e., Z, species until they decayed. The authors then used a laser to ionize the isotopes delivered to the ion source and injected the resulting ion beam into a so-called Paul trap [7]. Ions were intermittently extracted from the trap in short time bunches to enhance the signal-to-background ratio in the optical measurements. To study the atomic transitions in the cadmium ions, Yordanov et al. used deep-UV laser spectroscopy. To reach the deep-UV, fourth-harmonic generation of visible laser light was used. Essentially, this increased the sensitivity of the technique. (But, as noted by the authors, it also establishes a technique that could provide access to isotopic chains that were heretofore inaccessi-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Symmetry of Some Nano Structures

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...

متن کامل

Synthesis and investigation the thermal behavior thermodynamically of new metal Complex of Cobalt nitrate

Increasing the molecular accumulation and density of high-energy substances have a determinative role in improving the performance and intensity of energy release. Therefore, it is possible to increase the density of high-energy materials if the high-energy molecules can be arranged around a metal core as coordinated molecules. The aim of this project was to synthesize energetic complexes of cy...

متن کامل

P-226: American Ginseng Effects on Damage Induced by Cyclophosphamide in The Nuclei of Rat Sperm

Background: Oxidative stress occurs when the oxidative homeostasis is damage. Excessive ROS are generated and this reaction has been proposed to produce marked damage to the structure and function of sperm. Materials and Methods: This study was designed to investigate the protective effects of of American Ginseng against cyclophosphamide - induced damage in the rat sperm. For this experiment, t...

متن کامل

Effect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms

This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...

متن کامل

بررسی و مطالعه توابع ساختار و توزیع زاویه‌ای پراکندگی لپتون‌ها از هسته‌های 40Ca و 56Fe

 In this paper, we calculate nuclear structure function and EMC effect of 40Ca and 56Fe nuclei. To achive the goals, we consider Fermi motion and binding energy contrbiution in the harmonic oscillator model. In this model, harmonic oscillator parameter ħω related to shells root mean square radius and for free nucleon structure functions, is obtained from GRV’s free nucleon structure functions. ...

متن کامل

The Effect of Textual Enhancement Types on EFL Learners’ Grammatical Awareness of Simple and Complex Structures

The purpose of this study was to investigate the effect of textual enhancement types on English as Foreign Language ( EFL ) learn er s ’ grammatical awareness of simple and complex structures. A nu m- ber of 104 learners from Ayandegan Institute, in Tehran, participated in this study. To homogenize the samples, the researchers administered a placement Michigan Test of English language to the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013